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A new approach to modeling the electromagnetic response

of conductive media

K. H. Lee*, G. Liut, and H. F. Morrisont

ABSTRACT

We introduce a new and potentially useful method
for computing electromagnetic (EM) responses of ar-
bitrary conductivity distributions in the earth. The
diffusive EM field is known to have a unique integral
representation in terms of a fictitious wave field that
satisfies a wave equation. We show that this integral
transform can be extended to include vector fields.
Our algorithm takes advantage of this relationship
between the wave field and the actual EM field.
Specifically, numerical computation is carried out for
the wave field, and the result is transformed back to
the EM field in the time domain.

The proposed approach has been successfully dem-
onstrated using two-dimensional (2-D) models. The
appropriate TE-mode diffusion equation in the time
domain for the electric field is initially transformed

into a scalar wave equation in an imaginary g domain,
where ¢ is a time-like variable. The corresponding
scalar wave field is computed numerically using an
explicit g-stepping technique. Standard finite-dif-
ference methods are used to approximate the fields,
and absorbing boundary conditions are implemented.
The computed wave field is then transformed back to
the time domain. The result agrees fairly well with the
solution computed directly in the time domain.

We also present an approach for general three-
dimensional (3-D) EM problems for future studies. In
this approach, Maxwell’s equations in the time domain
are first transformed into a system of coupled first-
order wave equations in the ¢ domain. These coupled
equations are slightly modified and then cast into a
“symmetric’” and ‘‘divergence-free’’ form. We show
that it is to this particular form of equations that
numerical schemes developed for solving wave equa-
tions can be applied efficiently.

INTRODUCTION

Electromagnetic (EM) methods in geophysics have been
used for many years to determine the electrical conductivity
of the subsurface. The major application in Western coun-
tries has been in the search for mineral deposits, with lesser
applications in groundwater, petroleum exploration, and
crustal studies. In the Soviet Union, EM methods have
played a major role both in petroleum exploration and in
mineral exploration. In all these applications, the depth of
interest requires low frequencies, usually less than 30 kHz:
and for typical earth conductivities, the conduction current
is orders of magnitude greater than the displacement cur-
rents. The resulting second-order partial differential equa-
tion describing the behavior of the fields is, in fact, a

diffusion equation for which the solutions are quite different
from those of the more familar wave equation encountered in
seismic wave propagation or radar. Concepts of pulse or
wavelet propagation or of pulse traveltime and the construc-
tion of reflectivity images of subsurface structure are not
possible for solutions that do not allow well defined group
velocity. The difficulty of depicting the solutions for the
diffusion equation in all but simple, elementary situations is
one practical reason for the slow acceptance of EM conduc-
tivity mapping in new applications.

There are also numerical and computational complications
in using EM methods. Whereas perfectly useful model
realizations can be obtained with simple ray-tracing algo-
rithms in seismic studies, the EM responses for the same
models require a complete solution to a formal boundary
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value problem—usually a time-consuming process, since the
solution is obtained from the vector diffusion equation.

There have been great strides in obtaining efficient solu-
tions for certain classes of EM problems. The methods break
down basically into differential and integral equation tech-
niques.

Differential equation solutions were used as early as 1975
by Lines and Jones for magnetotelluric (MT) problems, and
the technique has grown in power and efficiency ever since
(Reddy et al., 1977; Pridmore, 1978). These solutions are
usually obtained in the frequency domain at discrete fre-
quencies. Although the methods can be used to model
arbitrary conductivity structures, practical applications have
been limited because the number of equations involved is too
great for available computers.

Lee et al. (1981) and Best et al. (1985) presented interest-
ing numerical solutions based on a scheme called the hybrid
method (Scheen, 1978). Later, Gupta et al. (1987) reported a
much improved numerical solution based on the compact
finite-element technique, a condensed version of the hybrid
method. The method basically consists of the finite-element
technique, but the computational domain is confined to the
inhomogeneous region on whose boundary Green’s func-
tions are used to enforce boundary conditions.

Numerical solutions using the integral equation technique
have been presented by Raiche (1974), Weidelt (1975),
Hohmann (1975), and Meyer (1977). In this method the
number of equations is reduced to essentially the number of
inhomogeneous elements, but the resulting matrix is full and
generally asymmetric. Further, each element of the matrix is
derived from a combination of Green's functions whose
computation is difficult; this step often dominates the con-
sumption of computer time.

Integral equation solutions, in either the time or the
frequency domain, also have problems associated with the
representation of the scattering currents, especially if the
host conductivity is low. Newman and Hohmann (1988)
provide an elegant analysis of this problem and show the
importance of carefully constructing a divergence-free and
curl-free representation of the scattering current. Their
solution involves a linear combination of closed current
tubes concentric with the center of rectangular prisms as the
divergence-free basis functions and constant current or pulse
basis functions for the curl-free component. The solution is
in the frequency domain and the time-domain response is
obtained by inverse Fourier transformation. This combina-
tion works very well for cube-like bodies and provides the
best, fastest algorithm yet produced for handling arbitrary
conductivity contrasts.

3-D direct time-stepping solutions for the EM diffusion
equations have been obtained by San Filipo and Hohmann
(1985) with an integral equation formulation, again using
tubes to represent the divergence-free terms in the solution.
2-D time-domain solutions have been presented by Orista-
glio and Hohmann (1984) and Adhidjaja et al. (1985) using an
explicit time-stepping technique for a finite-difference ap-
proach. Kuo and Cho (1980) and Goldman et al. (1986) also
developed 2-D time-domain solutions using the finite-el-
ement method with explicit and implicit time-stepping
schemes, respectively.

Several studies have implied interesting parallelism be-

tween the mathematical form for the EM diffusion equation
in layered media and the seismic wave equation in the same
media (Weidelt, 1972; Kunetz, 1972; and Levy et al., 1988).
These studies led us to investigate a more fundamental
relationship between the diffusion and wave equations, to try
to find out if, in fact, the diffusion equation for a field E in
time 7 might not be transferable to a wave equation for a field
U in a time-like variable ¢. This field U would be dispersion-
less and would have a well defined phase, as well as a group,
velocity. For any given conductivity distribution, U could be
obtained by any of the time-stepping methods available for
wave-equation modeling. The solution could presumably be
obtained for a pulse or a wavelet and the results portrayed
Jjust as seismic or radar results are shown. The solution in g
would then be transformed back to time to obtain the field
actually measured. A further and equally intriguing possibil-
ity is that the inverse transform could be used to transform
field data in time to the wave field in ¢ for analysis using
migration or even more sophisticated wave-equation imaging
or tomographic techniques.

In this paper such a transform is presented, and the
concept is tested numerically using 2-D models. We first
show a relationship between the diffusive EM field in the
time domain and its corresponding wave field in the g
domain. The transform process presented here is similar to
the one given by Lavrent’ev et al. (1980), but has been
generalized to include vector EM fields. The modeling
approach consists of two steps: first, the numerical compu-
tation of the wave field is carried out in the ¢ domain, and
then the resulting wave field is transformed back to the EM
field in the time domain.

THEORY

In this section we describe the formal relationship be-
tween the diffusive EM field in the time domain and the
associated wave field in the ¢ domain.

The EM fields are governed by Maxwell’s equations. In
the presence of a current source J* they are

J
VxE(r, t)= o B(r, 1), (n

V x H(r, 1) = d—at D(r, £) + J(r, 1) + J(r, ). 2)
Here the conduction current J¢ is related to the electric field
by Ohm’s law
J(r, n) = o(r)E(r, 1).
When we substitute the constitutive relations
B(r, ) = pH(r, 1)
and
D(r, 1) = s(r)E(r, 1)
into equations (1) and (2), the electric field satisfies
d
VxVxEr, )+ pa(r) 5 E(r. 1)
a2
s E(r, 1) = 8(r, 1), (3)

+ pe(r)
HEL 9
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where p is assumed constant and equal to the value in free
space and the source term S(r, t), identified as

Sr. 1) = —p 2 e, 1),
dJt

is assumed to be causal. Throughout the derivation the
medium is considered linear and isotropic. If we further
assume that the displacement current is negligible, equation
(3) simplifies to

V XV X Er, 1) + po(r) d—"t E(r, 1) = S(r, 1). (@)

The corresponding initial and boundary conditions are writ-
ten formally as

E(r,0)=0, E;=Er,0; >0,

where I' is the boundary of the volume V atr = r,. We now
introduce functions U(r, ¢) and F(r, ¢) such that

VxVxUr, g) + polr) i; U(r. g) = F(r, g),

Ur, 00 =L ur, q)| =0,
dgq q

and

U’]‘ = U(l‘h. C[), q> 0. (5)

After we make the connection between equations (4) and (5),
it is clear that the independent variable g has the dimension
of square root of time. The function U(r, ¢) would behave as
if it were a propagating wave with a velocity of (uo) "2 in
m/Vs.

A unique relation between E(r, 1) of the vector diffusion
equation (4) and U(r, ¢) of the vector wave equation (5) is
now derived. Laplace transforming equations (4) and (5)
from ¢ to s and from g to p, respectively, we find

V x V x E(r, 5) + po(r)sE(r, s) = S(r, 5),
I:Z’ = E(ry, 8);

_T . . i
| 7<drg(s)<+2,

L

and
V x Vx Ur, p) + po(r)p0lr, p) = F(r, p),

(7)

8]

_T . _T jus
. Ulry, p); 5 <arg {p) < +2.
If we let s = p>, equation (6) becomes

V x Vx E(r, p?) + po(r)p’E(r, p?) = S(r, p?),
(8)
£ - bir. p?):

T T
—= < ar )< 42,
: 4 g (p) 4

When we subtract the differential equation in equations (8)
from that in equations (7), with additional conditions

S(r, p*) = F(r, p)
and (9)

E(rh* pZ) = ﬂ(rbs [7)’

we find that
V x VxD(r, p)+ porpD, p) =0
and

A ™ ks
»o Ty <A p) <t .

(10}
4

where D(r, p) is defined as the difference between E(r,, p?)
and U(r, p). Multiplying both sides of the first equation in
equations (10) by D*(r, p), integrating over the volume V
bounded by the surface I', and applying a vector identity and
the divergence theorem, we obtain

[\V x D(r, p)I* dv + pp* ((r(r)lf)(r. p)?du=0;
Jv Jv

s T
—— < ar < +—,
4 g {p) 4

which can be true only if
E(r, pz) =0(r, p).

This result implies, after dropping the spatial variable r, that

f E(g)e =7 dr = f Ulg)e ™7 dg,
0 0

or, from s = p? with —w/2 < arg (s) < +7/2,

f “E(t)e " dt = f “Ulg)e ~ V4 dg.
0 0

Inverse Laplace transforming (from s to ¢) both sides of the
last equation, we finally obtain the integral relation between
the electric field E(r) and the wave field U(g):

E(1) = — fxe"z/‘"U dg. I
{1) vl § q (q) dg (1)
The necessary conditions (9) also result in the identical
relation for the source and boundary values in the ¢ and ¢
domains. This transformation involves only ¢ and ¢ and is
independent of r.

An interesting aspect of the transformation can be seen
through the following spectral analysis. Fourier transforming
differential equations (4) and (5) from ¢ to w and g to v,
respectively, we have

VX VX +iopok(w) =0, (12a)
assuming an ¢’ time dependence, and
vV x V x U(v) — v’uoU(v) = 0. (12b)

We have dropped the source terms from these equations for
the sake of simplicity. Notice that equation (12b) could also
result if a change of variable, w = /v?, is made to equation
(12a). This amounts to an analytic continuation of electric
fields on the real w axis to fields on a contour v = V' —jw with
®(v) = =w/4 in the complex w plane. In this connection, the
function B(x) in the MT inverse study by Weidelt (1972) is
similar in nature to the wave field U(g). This similarity can
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also be observed between the discrete form of U(v) and the

‘‘pseudo-impulse- series’” ¢, derived from the modified

impedance in the MT imaging studies by Kunetz (1972) and
later by Levy et al. (1988).

For further analysis, an important application of this
transformation is the construction of wave fields from the
time-domain data E(z). This process is essentially an inverse
problem for the wave field U(g). As was pointed out by
Weidelt (1972), the problem is ill-posed because the kernel of
the integral is exponentially damped. Nevertheless, if suc-
cessfully implemented, it could be used to develop an EM
imaging technique, a process which has not been possible in
the past due to the diffusive nature of the field. Studies
related to this subject from the point of view of inverse
scattering have been presented earlier by Isacv and Filatov
(1981) and Filatov (1984). A preliminary result in recon-
structing the wave field has been reported by Lee (1987).

Our primary objective in this study, however, is to apply
the transformation technique to the numerical modeling of
EM fields. In this application, we first obtain the wave field
U(g) numerically for a corresponding source F(g). The next
step is straightforward using the integral given by equation
(11). This numerical modeling scheme is particularly attract-
ive not only because many efficient wave equation algo-
rithms are readily available, but because it is easy to
implement these algorithms on modern computers, espe-
cially on those with parallel processing capabilities.

2-D NUMERICAL SCHEMES

One of the main objectives of this paper is to demonstrate
a new numerical method that is accurate and potentially
faster than conventional methods. To begin, we consider a
2-D EM problem. The model consists of a 2-D earth with a
line source of current polarized in the direction parallel to
the strike. A Cartesian coordinate system is employed with
its y-axis parallel to the strike and the positive z-axis pointing
downward.

In 2-D the problem is scalar. The electric field E, satisfies
the second-order diffusion equation

VE-poLE=-§ (13)
at

in the time domain. Numerical solutions to this equation
have been given by Kuo and Cho (1980), Oristaglio and
Hohmann (1984), and Goldman et al. (1986). Equation (13)
can be formally transformed to

42
VU -po S U=-F (14)
g~
in the ¢ domain. The subscript y is omitted from these

equations for simplicity and V> now indicates the 2-D

Laplacian: in- x and. z. All model results- presented. in- this-

paper are numerical solutions based on the scalar wave
equation (14).

A simple analytic example that illustrates the concept of
field transformation is given below. By switching off at + =
0' a steady unit current through a line source at the origin
(x = z = 0), the time-domain source is

S =pdx) 3(z) 3t —0 7).

To find the corresponding g-domain source F, we first write,

PATERY

fronr equation (119,

i T gt
wdx) 8(z) 8(r -0 ") = f ge " 1F dg
2V ’1’1’13 0

and take the Laplace transform (z to s) of both sides of the
equation. Then,

rdlx) 8(z) = f e \/;qF dg;
0

this is possible only if
F=ud(x) 8(z) 8(g — 0 ).

In a homogeneous whole space, solutions to equations (13)
and (14) in the presence of sources S and F are

£ woe - pop /4t
47 t

*
and

w H{g — \/nop)
2 \/q" ~ pop’

respectively. Here p® = x* + z?, and H(:) is a unit step
function. Substituting the wave field U into the integral (11)
results in the electric field E given above.

Another analytic example of the transform method is
demonstrated using a circular cylinder in a whole space of
conductivity 0.0033 S/m (Figure 1). The source waveform
used in the ¢ domain is the first derivative of a Gaussian
pulse

200 m

300 m

400 m

500 m

5

600 m

Fig. 1. A 0.1 8/m circular cylinder of radius 50 m in a uni-
form 0.0033 S/m whole space. A line source is located at 250
m to the left of the center of the cylinder, and the electric
field is computed at positions on the vertical line 150 m to the
right of the center of the cylinder.
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(CI :I()) 0" (g q“):/zaz’

Flg) = -

whose time-domain equivalent can be obtained by using
equation (I1). Constants used for this exercise are o =
0.001V’s and go = 0.04V's. The total-field solution for the
wave equation (14) is shown in Figure 2. As is expected, the
wave field computed in the shadow zone (zero offset) shows
a slight delay in arrival time with a substantial decrease in
amplitude. Traces of multiple reflections are also present.
These wave fields are then transformed back to the time
domain and the results (dashed lines) are compared with the
other independently obtained time-domain solutions (solid
lines) in Figure 3. With minor differences, due to the
truncated summation of the Bessel functions that represent
the analytic solutions in the frequency domain (Harrington,
1961), these two solutions are in good agreement.

NUMERICAL SOLUTIONS

We have used a standard finite-difference method with an
explicit g-stepping scheme to solve the scalar wave equation
(14) and have simulated the numerical domain by a grid
whose top boundary is fixed at the air-earth interface. At this
interface, a modified version of the integral boundary con-
dition (Oristaglio and Hohmann, 1984) has been imple-
mented (see Appendix B).

In order to advance the electric fields to the next ¢ step.
the explicit scheme requires field values at the current step
and one step before at every node. The increment in ¢ is
strictly dictated by the Courant-Friedrichs-Lewy (CFL) sta-
bility condition for hyperbolic equations (Mitchell and Grif-
fiths, 1980). For a 2-D scheme, the ¢ increment is given by

h min
Ag<—0 (15)
\/EUmux
where v is the phase velocity defined by (o) ™2 and / is the

grid spacing. From numerical considerations, Ag and h are

i

¢ |

a
.
i

lj ! i 1
0 100 200 300 400 500 600
offset (m)

0.3

0.2

S

Fig. 2. g-domain responses at offsets of 0, 100, 200, 300,
400, 500, and 600 m.

inherently related to the source waveform for a given con-
ductivity model. The waveform we have used for this
application is the Gaussian pulse

Flg)=e 14w,

The parameters ¢, and « should be chosen such that the
source field becomes negligible at g = 0; therefore, the
source field can be considered effectively causal. In deter-
mining the grid spacing h, we first examine the frequency
spectrum of the Gaussian pulse. With ¢, = 0 for con-
venience, we have

+ o . 222
Fv) :f Flgle "™ dg = \/2mae ~ 77V,

<

The source energy contained within a cutoff frequency B
may be found as

f+ BIF(v)I2 dv = \/;a erf 2wap),

- B

from which we find that about 85 percent of the source
energy would be accounted for if we choose B = (2ma) ~".
Another independent factor that should be considered in
determining the grid spacing is the number of samples per
wavelength . For the type of difference operator we used,
second order both in space and ¢, 10 to 14 samples per
wavelength is adequate. Using this information, we can now
estimate the grid spacing as

N mi 1 v TOY i
hnlin< min - min — lTllIl’ (]6)
10 10 B 5
from which we finally estimate the maximum Ag as
Umi Umi
i L (17

AGpax =
5\/5 U max U max

- AN

Y
i

i I i I
0 100 200 300 400 500 600
offset (m)

Log(t) (s)

N

FiG. 3. A comparison between the direct time-domain solu-
tion and the transformed solution at offsets of 0, 100, 200,
300, 400, 500. and 600 m. Solid lines represent the direct
solution and dashed lines are the transformed solution.
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The wave-field velocity is proportional to the square root of
the resistivity. The ratio of the minimum velocity to the
maximum velocity, i.e., the resistivity contrast, in a hetero-
geneous medium is, therefore, equal to the square root of the
ratio of the minimum resistivity to the maximum resistivity.
This means that the step size in g given by equation (17)
would decrease with increasing resistivity contrast. This
result implies that modeling in the ¢ domain becomes less
efficient when the resistivity contrast is very large.

We now present two numerical examples to demonstrate
and verify the g-domain approach for EM modeling. The first
case concerns the numerical computation of the electric field
in the g domain and subsequent verification of this result
with the analytic solution. The model is a homogeneous
half-space of 0.01 S/m conductivity; two line sources are
used to excite the medium. Currents in these two lines are
made to flow in opposite directions with the positive source
located at the origin and the negative one at x = —300 m. In
this example, parameters used to define the Gaussian pulse
are g, = 0.06Vs and « = 0.01Vs. To check our finite-
difference code, we used a grid with nonuniform spacings
ranging from 10 m to 40 m. The nonuniform grid is essential
for modeling inhomogeneous conductivity structures. The
grid consists of 215 nodes in x and 121 nodes in z, with its left
and right boundaries located at x = —2650 m and x = 3330 m,
respectively. The bottom boundary is at z = 2575 m. The
numerical computation was initiated by assigning analyti-
cally computed field values at every node for ¢ = 0.12Vsand
qg = 0.I2\/§_+ Ag, with the sampling interval of Ag =
6 x 10™* Vs. It took 3 minutes on an IBM3090 computer

300m 1540m

PPy

xX_ O e

0.01 s/m

0.0252

U(@) (9
0.0126

0.0
1.

-0.0126

0.0 0.1 0.2 03 0.4 0.5

q (+fs)

Fic. 4. Comparison of analytical (solid line) and numerical
(circles) solutions for the wave field U(g) in the ¢ domain on
a half-space of 0.01 S/m. Two line current sources of
opposite signs, separated by 300 m, are used with the
positive one at the origin. The waveform of the current
source is Gaussian. The position at which the wave field is
displayed is at 1540 m.

(equivalent to 60 minutes on the VAX780) for 600 g steps:
the result at x = 1540 m is shown in Figure 4 along with the
analytic solution obtained from equation (A-15) of Appendix
A. The agreement between these solutions is excellent.

The next model, shown in Figure 5, is a rectangular
conductor of 1 S$/m buried in a homogeneous earth of 0.01
S/m. The size of the conductor is 20 m in x and 300 m in z.
The top of the conductor is 100 m below the surface of the
earth and the left edge of the body is at x = 300 m. The
source is the same as the one previously used except that the
distance between the two line currents is now 500 m, with
the positive current still located at the origin.

In this example, instead of solving for the total field as was
done in the previous case, we have solved for the secondary
field by reformulating equation (14) for the secondary field as

al’

92 ;
= Ui, (18)

= U’ = pAo
aq- #

VU - po

where superscripts { and s denote ‘‘incident”” and *‘sec-
ondary,”’ respectively; Ac is defined as the conductivity of
the inhomogeneity minus that of the host medium. The direct
time-domain equivalent of this approach has been adopted
by Adhidjaja et al. (1985), resulting in improved accuracy in
the numerical solution with decreased computer time. In
particular, this formulation is useful when the scatterer is
close to the source. Entering the source field in the immedi-
ate vicinity of the source is not necessary. The secondary
field formulation requires ‘‘delayed’” source terms in g, since
the geometric separation between the source and the inho-
mogeneity guarantees that the secondary field is zero every-
where until after the source field arrives at the inhomogene-
ity.

The grid in this case consists of 129 nodes in x and 169

0.6

0.4 0.5

1 1
NG,
e
SRS
—_

q (Vs)
3

0.2

oS4
=}

a;]\ i | f

T T T y T T T
-60C.0 -400.0  -200.0 €.0 200.3 4G0.0 600.0 800.0 1003.0

e
ﬂf

Distance (m)

Fig. 5. Traces of the secondary wave fields 9°X%/aq* scat
tered by a | S/m conductor of size 20 m by 300 m. The
conductor is buried in a half-space of 0.01 S/m, with its top
100 m below the surface. Two line sources separated by 500
m are used, with the positive current at the origin. The
conductor is located at 300 m to the right of the origin.
Wave-field amplitudes are relative.
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nodes in z, with the left and right boundaries of the compu-
tational domain located at x = —520 m and x = 1140 m,
respectively. The bottom boundary is at z = 900 m. The
spacings, A x and A z, range from 2.5 m to 20 m, and the
sampling in g is fixed at Ag = 1.5 x 10~* V's. Constants used
to define the source function in this case are g, = 0.03Vs
and @ = 0.005V's. Since the wave field has much slower
speed inside the conductor, substantially smaller spacings
should be used there. As a result, the step size in ¢ is also
reduced. The initial condition is set by assigning zero fields
everywhere at g = 0.01Vs — Ag and ¢ = 0.01Vs. At these
instants in ¢, the incident field has not arrived at the
scatterer. The computer time required to carry out the 3600
q steps on the IBM3090 was 12 minutes.

The spatial derivatives of the secondary wave fields U*
computed in this manner are shown in Figures 5 and 6 in the
form of

0.2

q (\/9)
Dl 3
N

o4
=}
o

T T T T S T
-800.0 -400.0  -200.0 0.0 200.0 400.0 6C0.0 800.7 1002.0

Distance (m)

Fig. 6. Traces of the secondary wave fields 02X */ag? scat-
tered by a 1 S/m conductor of size 20 m by 300 m in Figure
5. Once again, wave-field amplitudes are relative.

500m 300m
transformed —X_ Q 2
&—@ positive ! znom' ‘£100m
©0---0 negative 7B
H
Hohmann's O = 01 Sm é 300m
A=A poaltive ‘
=N +e--+ nagative /
—3 Op = 1.0 S/m <
; —ffo—
= 7 20m
o
=3 fm
Py 3
- ]
A R 4
g o
~ —
« 3 !
- 7 !
-~ 1 !
n N - R
TS of o
g~} —3 i
3 '
3 i
i .
T +
O
-3
3
=
14
o 14
o |0
— T T T T T T Ty T T I T IITT
-5 - -3 -2 -1
10 10 10 10 10
time (s)

Fic. 7. Comparison between transformed and direct time-
dom.am solutions for the time derivative of the secondary
vertical magnetic field 9/ /s at the surface, x = 200 m.

X 1aU’

6q2 - Booox ’
corresponding to the time derivative of the vertical magnetic
field, and

axt 1 gU”

g~ poaz ’

the time derivative of the horizontal magnetic field in the g
domain. Here X is recognized as the transformed magnetic
field in the ¢ domain [H(r) — X(g)]. The second-order
derivative of X(g) with respect to g is equivalent to the
first-order derivative with respect to time. No additional
computations are necessary, since the process of taking
derivatives of the field with respect to x and z is a part of the
finite-difference scheme. These figures show traces of wave
fields in g at various positions on the surface. The amplitudes
in both figures are relative. The conversion of the wave field
to the time-domain EM field involves a simple integration
given by equation (11). If we wish to obtain time-domain
results corresponding to a specific source form, however,
this integration should be modified accordingly. This is
discussed in Appendix C, in which a particular case of
reconstructing time-domain responses caused by a step-
current source from wave fields generated by a Gaussian
source is explained. The technique is general and can be
easily adapted to simulating other forms of source. Using the
modified integral equation (C-6) of Appendix C, we have
transformed the responses for the station at x = 200 m of
Figures 5 and 6 into the time domain. These are the time
derivatives of the secondary magnetic fields. A comparison
is made between these results and the corresponding direct
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Fic. 8. Comparison between transformed and direct time-
domain solutions for the time derivative of the secondary
horizontal magnetic field a# (/37 at the surface, x = 200 m.
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time-domain solutions provided by Hohmann (Pers. com-
mun., 1988) in Figures 7 and 8. The two solutions are
identical for the time derivative of the vertical magnetic field
(Figure 7). The horizontal components of these solutions,
however, show substantial difference in the early-time re-
sponse (Figure 8). The solution obtained by the transform
method experiences an early-time phase reversal.

Adding the analytically computed time-domain incident
field to the numerically computed and transformed second-
ary field, we next show the profiles of the resulting emf. i.e.,
the voltage measured by a point coil with unit area. For time
channels of + = 1, 5, 9, 15, 25, and 35 ms, the vertical
component is displayed in Figure 9 and the horizontal
component in Figure 10. The responses in the early-time
channels for up to r = 25 ms agree very well with those from
direct time-domain results presented by Oristaglio and
Hohmann (1984). For the last channel, for + = 35 ms,
however, the profiles of two solutions differ slightly across
the top of the conductor. The solution obtained from the
g-domain approach is not as smooth as the direct time-
domain solution, indicating that more g-step numerical so-
lutions may be required for better results.

A FORMULATION FOR 3-D PROBLEMS

In this section we introduce a new approach for modeling
3-D EM problems in the transformed domain. As a result,
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Fic. 9. Comparison between transformed and direct time-
domain solutions for the vertical emfat 1, 5,9, 15, 25, and 35
ms. Solid lines and dark squares are positive, and broken
lines and open squares are negative.
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numerical techniques developed for solving wave equations
can be applied directly to the formulation presented here. In
source-free regions, Maxwell’s equations in the transformed
domain become

42

9T X (19)
aq-

VxU=—p
and
VxX=cU. (20)

In these equations the displacement current has been ne-
glected, and all independent variables have been omitted for
simplicity. We also notice that E(z) and H(r) have been
transformed to U(g) and X(g), respectively. Introducing a
change of variable

equation (19) becomes

VxU=—pLv; 23}
dq
taking the derivative of equation (20) with respect to g, we
find that

vxv=-o2u. 22)
file}
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Equations (21) and (22) are a system of wave equations for U
and V and can be formally rewritten as
Aa-l»BavLCa‘Da W=90
Sdx 9y - gz - dg v @3)

where A, B, C, and D are symmetric matrices of order 6 with
Zero entries. except

@Gre=de2=b34=bs3=cr5=c5, =1,
a3s=as3=b1e=bg =crs=cqy= 1,
and-
diz=0 for i=1,2,3 and =p for i=4,5,6.
W is a column vector consisting of Cartesian components of
vector wave fields U and V
W=(U,U,U,V,V, V)"

Note that elements of matrices A, B, and C are constant and
independent of spatial variables and also that the matrix Dis
independent of the variable ¢. This property enables us to
rewrite equation (23) in a more compact form

Q-Y=0,
where the vector function Y is given by
Y = RTAW)R + ('Bw)y + (Z'Cw)z + (4 Dw)q
and the operator Q is defined as
0=2L34+ g0, 94
ax Jy a9z dq
Equations of the form of equation (23) are called divergence-

free. An excellent analysis for the stability and the accuracy
of the resulting numerical solution to this type of equation

has been given by Strang (1968). It is to this particular. form.

of equation that the dimensional splitting method (Strang,
1968), among other techniques, can be applied efficiently. In
this method, a multidimensional problem is simulated by a
sequence of I-D problems; consequently the complexity
involved in the numerical treatment of boundary values is
substantially reduced. The algorithm based on the dimen-
sional splitting method has been applied successfully to
elastic waves in 2-D media by Bayliss et al. (1986).

CONCLUSIONS

The successful application of the transform method to the
numerical modeling of EM fields has been demonstrated.
The approach provides a powerful new method with which
we can compute numerical solutions for many practical
geologic models. The physical meaning of the wave field in
the g domain is not entirely clear at the moment. The
approach simply makes use of advantages inherent in meth-
ods of solving the wave equation for the diffusion equations.

For direct time-domain solutions the time step At for the
explicit numerical method is determined by the grid diffusion
time (Potter, 1973). For typical earth materials the range of
grid diffusion time is less than 1 ws. It has been shown,
however, that this rather severe constraint in the time-step
size can be gradually relaxed as time increases (Oristaglio
and Hohmann, 1984). This finding is based on the slowing

down of the diffusion rate of the point-source field in an
unbounded medium. Numerical modeling involves compli-
cated interactions among inhomogeneities, and each one of
these inhomogeneities acts as a source at all time. For this
reason, the increased time-stepping scheme should be used
as a guide, and care should be taken when the scheme is
applied to modeling of EM fields for general conductivity
structures. In the transform domain, on the other hand, the
increment in g is dictated strictly by the CFL stability
condition [see equation (15)). This condition. resnlts. in. a.
range of Ag-from-approximately 8: I mq to- - mq-for the same:
typical earth materials. For example, let us assume a model
consisting of a 2-D medium with its conductivity distribution
ranging from 0.01 S/m to 1.0 S/m. In this case, the ratio of
the minimum velocity to the maximum velocity is 0.1. The
constant « used to define the Gaussian waveform is 0.01 Vs,
Substituting these numbers into equation (17), we find that
the maximum Agq is 0.44 mq. Based on this consideration, we
initially thought that the g-domain approach would be much
faster computationally than the time-domain approach.
However, present model study shows that actual ¢g-domain
computing time is about the same as those reported by
Oristaglio and Hohmann (1984) and Adhidjaja et al. (1985).
Nonetheless, as an initial demonstration we consider this
near equality in computing time to be a major accomplish-
ment, since the technique is new and significant reduction in
computing time could result if the scheme can be optimized.

In principle, the optimization can be achieved by using
higher order absorbing boundary conditions (Clayton and
Enquist, 1977). Successfully implemented, the domain of
computation would be reduced; as a result, overall computer
time would be decreased. Another major gain in speed could
be achieved by using the finite-element method instead of the
finite-difference. method. The relative freedom: in- choosing:
the shape of elements in the finite-element method would
considerably reduce the total number of cells within the
numerical boundaries. Because of the requirement of having
to use straight lines to discretize a model, the finite-dif-
ference scheme involves needless rectangular elements on
all four sides of the conductive body. The number of
unnecessary elements would increase as we increased the
conductivity contrast. The finite-element scheme can reduce
this waste but at the expense of increased complexity in grid
designing to avoid spurious reflections in the numerical
solution.

Our ultimate goal is the development of 3-D numerical
modeling techniques that can be used to interpret practical
EM sounding data. Although the proposed technique ap-
pears promising, practical use of the resulting computer
program for routine interpretations would still require mod-
ern computer capabilities.
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APPENDIX A
PRIMARY ELECTRIC FIELD IN THE TRANSFORMED DOMAIN

Here we derive the Green’s function for the electric field
in the ¢ domain due to a line current source on the surface of
a homogeneous earth. A right-hand coordinate is chosen
such that the x — y plane coincides with the earth surface and
the z-axis points vertically down. Let the source line merge
with the y-axis and the current flow in the positive y
direction. Once the Green’s function corresponding to an
impulsive source is found, the function is convolved with a
source function F(g) to yield the primary field. This primary
field is used in the finite-difference computation.

The 2-D electric Green’s function G(x, y, g) with the
displacement current neglected satisfies the following equa-
tions:

V3Gix,z,9) =0, <0 (A-1)

and

42
<V2 - po (—9—(;5) Gx, z. ) =0, >0, (A-2)

where p is the magnetic permeability and ¢ the conductivity
of the earth. Taking the Fourier transform of the above
equations with respect to x and ¢, we get

2 62 =
(‘ ki + 5’7) Gk, z,v) =0, z<0 (A-3)
2

and

ol 62 P3
(— kit pov?+ a—> Gk, z, V) =0, z>0, (A-4)

where

+ % .
Gk, z,v) = ff Gix, z, )¢ —ikox v gy dy.

o«

Solutions to equations (A-3) and (A-4) in their respective
regions are

Gk 2, v) = Alky, v)e ™7 z2<0 (A-5)
and

Glk,, z, v) = Bk, v)e <, z>0, (A-6)
with

R
k> po v?
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and

k,= pov? — ki, ki< o vl

We now apply boundary conditions to these solutions at z =
0. From the continuity of the tangential electric field

A=B8, (A-7)

and from the discontinuity of the tangential magnetic ficld
across the surface current (Harrington, 1961)

— lkylA — ik, B = —1, (A-8)
we obtain

1 1tk — ik,
A=B= — = — . (A-9)
k! + ik, po v

The Green’s function on or below the surface of the earth
(z > 0) can now be formally written as

Gix, z,q) =

4172;.-,0

I

The inverse Fourier transform in equation (A-10) can be
carried out by writing

= ik sz gy ik X + vq) dk, dv. (A-10)

G, z,q) =1+ 1,

with
+ o |k I I
1 ff *lkzzel(kxX%-vq) dkx dU
4Tr wo
and
1 +o bk, L
[2 - s e —Ikzlel(k,\—x+ vg) dkx dV,
dmepe f_ v

and evaluating integrals term by term. The first term, /,, can
be evaluated by initially making a change of variables s = iv
and subsequently manipulating the expression into

1 a2
li=—
TRo dX 4z

k +;.L0'Y4

+ix e
j f e ds | sin k,x dk,.
0 2mi \ / k + nos?

In this integral, all possible k, values that satisfy radiation
conditions have been accounted for. The inverse Laplace
transform in the brackets can be written as a convolution of
a linearly increasing function

1
A ) R0

with a Besscl function of the first kind of zero order:

e \/kar;ursZz

L*I

Thus, with p? = x2 4+ z2, we obtain

I1,=0, 0<q<\/@z

1 a? w1
= e q*
TRo dx 0z 0 \/IL—O‘
X J( i \/q* 22> sin k, x dk J
oy —— —Ho 5 x x
Vo

and

r

1 a° q q—-T
— = dt
TWTF ax 0z \/EZ \/ ].L(sz - T
Vu:z<q< \/;.Top
1 02 r\/utrp q—T ,
—_— " — Y dan,
TRO Xz J e \/pop?~ 12

L q> pop,  (A-11)

- <

where the = denotes convolution. The second term, I,, can
be cvaluated by rewriting 7, as

. o2 +o i oo —ik,z
1, =1 a7 ﬂ(lf ek coskxxdkx) dv

4o dz? e VAT

x

g _2 +® H&Z)(\/ pv) g
417;10 az? ) o
(), q < \/
=11 o° Ldﬂr’ q > \V Rop.
TWO 82 Viwop Vel — MUPq

(A-12)
The integrations and differentiations involved in equations
(A-11) and (A-12) can be carried out in closed forms to yield

0<g< \/@z,
lz(2 g* — wpz)}

\/ wop® — g°
Vo z<gq <\/pop,

Z [(x2 -2 - x™\/q* - pop?

Gx,z,q)=0,

1
= 4[(xz—zz)q—k

TROP

TIOP

2.2
4
- Zﬁq] 9>\ uop.  (A13)
Vd — pop
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On the surface of the earth (z = 0), this Green’s function
reduces to

Gi(x,z2=0, q)
4 0<g< \/7
—_— aFX
TG x2 i #
= 1
(g — 2~ nox?d), > MO X,
o Va4 —n a>\/po

(A-14)

Now that the Green’s function has been found, the inci-
dent electric field U in the transformed domain due to a

corresponding source function F(g) can be computed by a
convolution:

+CL
U'lx, z.q) = f G(x, z, g — 1F(1) dr.  (A-15)
0

In our computation, we have chosen F(g) to be a Gaussian
bell given by

Flg)= e ‘a- a0, (A-16)

In equation (A-16), constant parameter g, and « effectively
control the waveform. Typical values used in this study are
do = 0.03Vs and a = 0.005Vs.

APPENDIX B
BOUNDARY CONDITIONS

The finite-difference method involves discretization of a
domain confined by a closed boundary, where special treat-
ments are required for its boundary values. In order to make
the computational domain as small as possible, it has been
shown that absorbing boundary conditions can be used for
modeling wave-field propagation (Clayton and Enquist,
1977). Since g-domain modeling is essentially a wave prop-
agation problem, we applied the absorbing boundary condi-
tions (a second order in Clayton and Enquist, 1977) to the
side and bottom boundaries of our 2-D models.

The upper boundary is the air-earth interface. The air is
excluded from the computational domain. In this section we
discuss how we treat this boundary value problem numeri-
cally. An excellent scheme for the treatment of time-domain
boundary conditions at the air-earth interface has been given
by Oristaglio and Hohmann (1984). The ¢-domain equivalent
takes the same form and can be written as

—Ulx,z2=0,q)=—P dy ——° T (B
az T -

] 1 J’+x a . Ux',z=0,q)

where P indicates the Cauchy principal value. This equation
relates the vertical derivative of the electric field to the
Hilbert transform of its horizontal derivative. We now
consider a fictitious boundary Az above the earth’s surface.
The size of the extension Az is the same as the vertical
sampling interval just below the earth’s surface. If the
electric field at ¢ = iAq at this extended boundary is known,

the electric field at ¢ = (i + 1)Ag inside the boundary,
specifically at the air-earth interface, can be computed by
rearranging the numerical expression for

)U(x, 2=0,9)=0. (B-2)

[ 52 42 2
(i‘; + 9 3 T O 9 5
X" 0z aq-
Using the vertical derivative of the electric field obtained
from equation (B-1), we compute the electric field at the

fictitious level z = —Az from the central-difference scheme
HU(X. Z= 0» Q)
Ux,z=—-Az,q)=Ulx,z=Az,q) —2Az BT
z
(B-3)
and then substitute this result at z = —A z into equation (B-2)

to finally obtain the electric field at the next g step at the
air-earth interface.

At the air-earth interface, numerical computations for the
Hilbert transform are carried out in the wavenumber do-
main, using the Fourier transform equivalent of equation
(B-1)

aUk,, z=10, g)

=k, Uk, 2=0, q). (B-4)
az

A Lagrange interpolation scheme is used to interpolate field
values generated by the finite-difference on the nonuniform
grid to field values on a uniform grid. These interpolated field
values are then Fourier transformed and used as in equation
(B-4) for the wavenumber-domain Hilbert transform.

APPENDIX C
TRANSFORMATION OF FIELDS

In the g-domain numerical modeling, the source function
needs to be both finite and sufficiently smooth so that serious
dispersions effected by the discretization in both space and ¢
can be avoided. For this reason, we have chosen a Gaussian
pulse as the source throughout this paper. The objective here
is then to recover the anticipated time-domain step-current
response from the g-domain numerical model result with a
Gaussian type of source.

The relation between g-domain and time-domain fields is
given by

1 S 2,
E(t):————f ge "M U(g) dg. (C-1)
/=* Jy

Taking the Fourier transform of equation (C-1) with respect
to 1, we find
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Flw) = f et Vg dy. (C-2)
0

Rewriting the Gaussian source function given by equation
(A-16) in Appendix A,

Flg)=e 440’

and choosing constant parameters 4o and o such that £(g)
remains effectively zero for ¢ less than zero, we can show
that the Fourier transform of the time-domain equivalent of
this source is

S(w) — \/ﬁae - W qo+ iu;az/'Z. (C-3)

The frequency spectrum of the time-domain response due to
the unit step-current source, therefore, can be written as a
deconvolution
E(w)
(@) = p—

S(w)

[ * — -
— f e = Vilg — go) - iva /QU(q) dg. (C-4)
0

27

We now require that the secondary wave field scattered by
the conductor not reach the earth’s surface before g = g,,. so
that

Ulg) = 0, g < ¢y. (C-5)

Then the response due to the step-current source can be
obtained by taking the inverse Fourier transform of equation
(C-4): the result is

1) =0,

2ma\/2(t — o?12)3
2

~ (g - llo)1 o
Xf ((] - Cl(r)l‘ B ar — w2 U(CI) dq, t> 7
q

0

(C-6)



